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NOTATION

B Magnitude of B

B Resultant force caused by static pressure of fluid acting on
boundary of body

CB Center of bouyancy (the point where B appears to act)

CG Center of mass (the point where W appears to act)

K, M, N Components of resultant moment of B and W about 0 in the
directions of the x, y, z axes

KB, MB, NB Moments of B about the x, y, z axes

KG, MG, NG Moments of W about the x, y, 2 axes

0 Origin for the z, y, z axes

Q Combined moment of B and W about 0

Q'B Moment of B about 0

QG Moment of W about 0

rB Position vector of CB with respect to 0

rc GPosition vector of CG with respect to 0

IV Magnitude of W

W Resultant force caused by gravitational attraction on mass of
body. Water inside the boundary of the body, whether in hard
tanks or free-flooding, normally is considered part of the mass.

X, Y, Z, Components of the resultant of B and W in the directions of
the x, y, z axes

X6, X , etc. Partial derivatives dX ,9X etc.

Xo Initial value of X force

•r' Y, 2 Coordinate axes fixed in the body (See DTMB Report 13191)

xB' YB' zB Coordinates of rB in the x, y1, z axes

1References arc• >Ited. on page 9
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ZG, YG' 2G Coordinates of 7C in the z, y, z axes

Y', YI, al A set of orthogonal, right-hand, Cartesian coordinate axes
fixed in space (The z, axis is assumed fixed in the direction
of gravitational attraction.)

A Prefix indicating an incremental change in a quantity

1, 0, 4 Euler angles giving the orientation of the x, y, a axes with
respect to the x/, yl, z, axes (See Reference 1)

•o' 0o0 00 Initial values of qb, 0, 4b
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ABSTRACT

Complete expressions are given for the forces and moments acting on a

submerged body because of gravitational attraction on the mass of the body and

buoyancy force acting on the body boundary. The variations of the forces and

moments with changes in angular attitude of the body are discussed in detail.

The relationship of these variations to the phenomenon of metacentric stability

is described.

INTRODUCTION

Frequently the motion of an underwater body is treated by considering that the body is

ballasted until it is in neutral buoyancy, that is, the mass of the body is adjusted to equal the

displacement of the body. Coupled with such an approach, it is usually assumed that the loca-

tion of the center of mass simultaneously is adjusted to a position directly under the center of

buoyancy. Such a body is said to be in neutral buoyancy and level trim.

No great complication is introduced in the equations of motion if one assumes that the

body is neither in level trim nor in neutral buoyancy-in fact, such an assumption is usually

more representative of the true condition, an out-of-trim state either by design or because of

leakage. Aa an interesting aside, leakage may be of air at a ballast tank blow valve, thus

causing the body to be "light."

The treatments of the ouu-of-trim motion of an underwater body which exist in the liter-

ature usually employ expressions which have been "linerarized" to some degree. The author
felt that complete, nonlinear, expressions for the gravitational and buoyancy terms might be

useful because such expressions would be exact regardless of the magnitude of the angular

departure from "even keel." Furthermore the proposed expressions would involve no restric-

tions as to the locations of the center of buoyancy and center of mass with respect to the ori-
gin of the body axes. Such exact expressions can readily be linearized to the extent warranted

by a particular problem. The simplification of the basic expressions in the case of a plane of

symmetry is illustrated.

The material reported here is part of a broader study of the general equations of motion

of a body in a fluid being carried out under the General Hydromechanics Research Program at
the David Taylor Model Basin. Other related work is contained in References 2 aiid 3.

GENERAL CONSIDERATIONS

The phenomenon described in the field of naval architecture either as static stability
or, preferably, as metacentric stability results from the interaction of two external forces act-

ing on a body that has part or all of its outer envelope in contact with a fluid. These forces

are called the gravitational force and buoyancy force. The importance of metacentric stability



in the dynamics of underwater bodies has been recognized for some time. 4 The equally im-

portant metacentric stability of a surface ship is a slightly more involved concept and lies

outside the scope of this paper.

BUOYANCY FORCE

The buoyancy force frequently is called displacement. It is a function of only the form

of the outer envelope of the body and the presence of a static pressure gradient in the fluid.

The static pressure gradient exists orly because of the gravitational attraction on the mass

elements of the fluid.

Surfaces of equai static pressure may be visualized as horizontal laminations in the

fluid, with the pressure increasing as one goes deeper because each lamination is supporting
the weight of all the layers of fluid above it. Thus the direction of maximum static pressure

gradient is vertically down.

Any body immersed in the fluid will have some portion that penetrates into the deeper
laminations and hence will experience a higher static pressure on this lower portion. It fol-

lows that the body is acted upon by a net buoyancy force upward, with a line of action directly
opposite to the direction of gravitational attraction.

if the fluid and the body are incompressible, the magnitude of the buoyancy force is
directly proportional to the volume of fluid displaced by the body and is independent of the

angular attitude or depth of the body. Conceptually, the buoyancy force may then be con-
sidered to act at a fixed point whose location is called the center of buoyancy. The position
of the center of buoyancy is governed solely by the shape of the body-fluid boundary.

Generally speaking, hull compressibility will not cause significant migrations of the
center of buoyancy of an underwater body but may account for sensible changes in thG magni-
tude of the buoyancy force. The compressibility of witer is considered of no practical im-

Y-rtance unless very great depth changes are envisioned; density is of the order of 5 percent
higher in the greatest ocean depths (35,000 feet) than on the surface. T1.e "density layers"

caused by abrupt changes in salinity or temperature normally are much more significant.

GRAVITATIONAL FORCE

Gravitational attraction acts on all the mass elements of the body. The distribution of
mass within the body determines the location of a point called the center of masa, about which
the body will balance in a uniform gravitational field. Strictly speaking, the integrated effect
of gravitational attraction on all the mass elements of the body gives rise to a net gravitational
force which may be assumed to act at a point called the center of gravity. The center of gravity
will differ from the center of mass only if the gravitational field is nonuniform.
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In relation to the probable size of underwater bodies, the earth's gravitational field

may be considered uniform; furthermore, the center of mass is of special importance if siccel-

erated motions of the body occur, hence the preference for that term, vis-a-vis certer of grav-
ity, in discussions of dynamics.

In typical underwater bodies, the magnitude of the gravitational force and the location

of its point of action are adjustable by ballasting; i.e., the mass and center of mass are
variable.

METACENTRIC STABILITY

The existence of metacentric stability depends upon the failure of the center of mass

and the center of buoyancy to coincide. Assume a body submerged in water, motionless, and

on "even keel." Furthermore, assume that the body has been ballasted so that the center of
mass is directly below the center of buoyancy and that the mass has been adjusted to produce
a gravity force (hereafter called weight) just equal to the buoyancy force. Such a body will

remain motionless at its present depth. If the body then is disturbed in either pitch or roll

(and the disturbing cause subsequently removed), the body will return to its initial attitude.

Such a body is said to possess the characteristic of metacentric stability. The stability
exists because any angular displacement about any axis (except the vertical line containing

the center of mass and center of buoyancy) shifts the lines of action of the two forces to two
parallel locations such that a couple is produced tending to decrease the angular displacement.

Two important variations on the preceding situation can be pictured In the first, the
body is in neutral buoyancy but not in level trim. As a consequence, the center of buoyancy
is not above the center of mass. When the body is released in the stated initial conditions,
it will rotate to a new attitude where the two centers do lie on a common vertical line; in the
new attitude, the configuration will have metacentric stability, as described before. Note

that a net initial moment exists which tends to rotatq the body to its new attitude.

In the second important variation, the center of buoyancy is above the center of mass

but the weight and buoyancy are not equal. There is a net initial vertical force present,there-

fore, which will accelerate the body when it is released under the stipulated initial conditions.

For discussion, assume that the weight is greater than the buoyancy. Then a fraction of the
weight equal to the buoyancy can be paired with the buoyancy to create the conditions for

metacentric stability described in the first paragraph of this section. The remainder of the
weight constitutes an accelerating force at the center of mass which can exist simultaneously

with the conditions for metacentric stability.
A third variation that combines the cases described in the two prer.eding paragraphs

does not introduce any new concepts.

3



SUMMARIZING REMARKS

The preceding discussion has sought to develop two principal points in the general

case of a submerged body not in neutral buoyancy, namely: (1) there is an initial net vertical

force and a net moment, at a given initial attitude, and (2) with changes in angular attitude

there are changes in the moment, represented by the phenomenon of metacentric stability.

Because a net vertical force exists, its presence leads to force changes along the body axes

if the angular attitude changes.

DERIVATION OF GENERAL EXPRESSIONS

In this section, the complete expressions will be given first for the force and moment

on an out-of-trim submerged body. A presentation of what are called "attitude derivatives"

will then be given. These derivatives describe the rate-of-change of force and moment with

change in angular attitude.

EXPRESSIONS FOR FORCE AND MOMENT

Assume a set of orthogonal, right-hand, Cartesian coordinate axes zx, yp, z, fixed in

space, with the a, axis aligned in the direction of gravitational attraction. This set will be

called inertial axes. Also assume a submerged body with a similar set of axes X, y, a fixed

in the body at the point 0. Let 0&, 0, 95 be Euler angles fixing the angular orientation z, y, a
with respect to zl, yl, a, (see Reference 1).

Let B be a vector representing the buoyancy force on the body, and W a vector repre-

senting the force of gravitational attraction on the mass of the body. Magnitudes of the vec-

tors are represented by omitting the bars over the letters. Then

Winig [-]

where m is the mass of the body and g is the acceleration of gravity.

Consider now the resultant of the buoyancy and weight forces, the vector sum of W and

B. The magnitude of the resultant is W-B because B is opposite in direction to W. The

selection for the orientation of the inertial axes was such that the resultant has a component

only along the a, axis, and its amount is W-B. The resultant also has components along

the z, y, a axes, which are represented by X, Y, Z, respectively.

The following table of direction cosines can be used to obtain the -omponents X, Y, Z

in terms of the components that the resultant has in the inertial axes.
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kX Y z

0 cos Vcos 0 -sin Vcos c+ cos 0 sin @sin j cos 0 sin 0 oos 0 +sin sin5
o sin 0 cos 0 cos obcos O +sin t sin 0sin o sin O/ sin 0cos o-ccs Osin 0

W-B -sin 0 cos 0 sinrf, cos 0 cos

Thus

X - (W - R) sin 0

Y - (W - B) cos 0 sinck [21

Z - (W -B) cos 0 cos /

Assume that B has a point of action at the center of buoyancy CB. Let"TB be a vector
giving the position of CB with respect to 0. Similarly, let W act at the center of mass CG,
and let rG be its position vector. Then B has a moment about 0, represented by the symbol

and given by the vector cross product

QB- " x x B [31

Let QB have components KB, MB, NB about the z, y, a axes, respectively. Then from
Equation (31

KB - (-B cos 0 cos 0)yB + (B cos 0 sin 0) "r

MB - (B sin 0) aB + (B cos 0 cos S) zB [41

NB - (-B cos 0 sin 0)xB - (B sin 8 )YB

where XB, YB' ZB are components of B in the directions of the z, y, a axes.

The weight force vector W also has a moment about 0 according to

Q,- r) W [51

where Q. is the moment about 0.
Let G have components xG, YG' zG in the directions of the z, y, a axes, and take

KG, MG, NGas components of -G about those axes. Then Equation [5] can be separated into

KG -(Wcos 0cos -0)yG -(Wcos Gsin 0)ZG

MG -(-W sin 0)zG -(W cos 0cs aO)aG [61

" (W cos 0 sin k)ZG + (W sin 0)yG
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Let Q be a vector fepresenting the moment about 0 of the combined effects of Band W,

and let K, MI, N be components of Q about the x, y, z axes. Then from Equations [41 and [61

K-cos O [(YGW-YBB) os 0-(ZGW-aBB) sin 4]

M3 - (XGW-ZBB) cos 0 cos 4)- (ZGW-zUB) sin 0 [71

N = (XGW-XBB) cos 0 sin 45 + (YGW-YBB) sin 0

ATTITUDE DERIVATIVES

Assume that a submerged body is at some initial angular attitude specified by 10, 00,

4)0. Then differentiation of Equations [2) and [71 with respect to 0 or 4h will supply the fol-
lowing series of complete expressions for the derivatives. (Note that Equations [2] and [71

are not functions of 0.)

X6 - - (W-B) cos 00

Y - - (W-B) sin 0o sin 0

Y = (W-B) cos 00 cos .0

Z0= -(W-B) sin 00 cos qo

Z -. (W-B) cos 0 0 sin 0o [81

KO -sin 00 [(YGW-YBB) cos '00 -(ZGW-ZBB) sin 0.

K - cos 00 [ (zGW-zBB) cos 00 +(YGW-YBB) sin 950]

O= -(ZGW-ZBB) cos 0(o +(xGW-xBB) sin 00 cos 60

Me = (xGW-ZBB) cos 00 sin 0o

N0 6 (yGW-yDB) cos 00 -(XGW-xBB) sin 00 sin 00

N4 = (zGW - BB) cos 00 cos 0

Where X0 - -a- , etc.

EFFECTS OF LARGE PERTURBATIONS ON ATTITUDE DERIVATIVES

Note that Equations [81 are partial derivatives and, although they are valid for initial

values 00' 00' 4o however large, they apply only to small incremental changes AO, A0 from

those initial conditions.
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If the perturbations from the initial conditions are large, such that the approximations

si:,- AO - 0

cos AO 1L [91
sin AOS 0

cos AO ft 1

are not valid, Equations [8] must be replaced by more cumbersome expressions. For example,
let X0 be the initial value of X force due to an initial value of 0 0 so

X0= -(W-B) sin 00 [101

from Equations [2]. After a large perturbation AO, there will be an attendant change in X force

of Pmount AX, whereby

X 0 + AX . - (W-B) sin (00+ AO) = - (W-B) (sin 00 cos AO+cos 00 sin AO) [111

Subtracting Equation [10] from Equation [11], the change in X force due to a change in 0 is

AX = - (W-B) cos 00 sin AG + (W-B) sin 00 (1-cos AO) [121

Note the comparison of Equation [12] with the first member of Equations [8].

A similar treatment can be given the remainder of Equations [21 and [7]. As an
illustration

AY - -(W-B) sin 00 sin 00 sin AO cos AO,

+(W-B) cos 0 cos 00 cos AO sin AO

-(W-B) sin 00 cos 00 sin AG sin AO

-(W-B) cos 00 sin q0 (1- cos AG cos AO) [13]

which may be compared with the third and fourth members of Equations [8]. Equations of the

form of [121 and [131 hold for perturbations however large.

The perturbations may be moderately large where the approximations of Equations [9]
do not hold but the assumptions can be made

sin AG = AO
cos AO - 1

sin A4O A}

cos A9 - 1



These approximations are valid to within 1 percent for angles up to 8.1 degrees. Then Equa-

tion [123 can be replaced by

AX - -(W-B) (cos 6o) Ae [151

and Equation [13] by

S-(W-B) [(sin 0o sin 0o)AO-(cos 0o cos 0)A•i+(sin 0o cos 0o) MAO] [161

Note that AOA4 is less than 0.02, in radian measure, when the two perturbations are each

8 degrees. The term involving AOA, in Equation [161, therefore, is of the same order as the

term involving 1-cos AO cos A0, which was dropped from Equation [131 as a result of applying

Equations [14]. If the term involving AOA9 is also dropped, Equation [16] becomes

Ay- -(W-B) [(sin 80 sin 0 0)A0-(cos 00 cos 0r))A0] [171

Comparison will show a mathematical equivalence of Equation [151 with the first two

members, and of Equation [171 with the third and fourth members, of Equations [8]. The con-

clusion is made, therefore that Equations [81 are suitable for perturbations of up to 8 degrees

in 0 and 0i from any arbitrary initial conditions of these quantities, provided that errors of

less than 2 percent are acceptable. For larger excursions, or a more stringent accuracy re-
quirement, expressions of the form of Equations [121 and [131 should be used.

EFFECT OF PLANE OF SYMMETRY ON ATTITUDE DERIVATIVES

If the body possesses a common plane of symmetry for both its geometric shape and its

mass distribution, the attitude derivatives can be given in simpler form. -Assume that the

y axis is normal to the plane of symmetry and that the origin for the z, y, z axes lies in the

plane of symmetry. Then

YB - YG = 0 [18]

and Equations [81 can be replaced by

X0 -(W-B) cos 0

x '0 0 [1 9 1

Y- - -(W-B) sin 00 sin 00

Y= (W-B) cos 0o cos 0o

8



Z= -(W-B) sin 0 cos q5

Z9, -(W-B) cos 0. sin 00

K0 = (2GW-zBB) sin 00 sin 50

K O --(zGW-ZBB) cos 0 0 cos o191

M0= -(ZGW-ZBB) cos 0O+(XGW-zBB) sin 00 Cos So

M,0 (ZGW-zBB) cos 00 sin 00

No -(xGW-z B) sin 00 sin 00

N,- (ZGW-ZBB) cos 00 cos 0o
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